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Outline

◮ Linear characteristics and correlations

◮ Matsui’s algorithms

◮ Traditional statistical models using normal distributions

under key equivalence hypotheses

◮ Linear Hull theorem

◮ Key variance and more realistic key hypotheses
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Expected outcome

◮ This lecture provides you with the basic concepts for

understanding Matsui’s algorithms and more general linear

cryptanalysis

◮ This lecture is targeted to give you the necessary (and
hopefully also sufficient) prerequisites for being able to
read recent

◮ CRYPTO 2015 paper by Jialin Huang, et al., (and possibly

also the one by Bing Sun, et al.)
◮ FSE 2013 paper by Andrey Bogdanov and Elmar

Tischhauser

◮ and goes beyond by presenting a new comprehensive

model of Matsui’s Algorithm 2 that handles key variance for

both wrong keys and right keys.
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Section: Linear characteristics and correlations
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Symmetric-key encryption

k ∈ K the key

x ∈ P the plaintext

y ∈ C the ciphertext

Encryption method is a family {Ek} of transformations Ek : P → C,

parametrized using the key k such that for each encryption

transformation Ek there is a decryption transformation Dk : C → P,

such that Dk (Ek (x))) = x , for all x ∈ P.

The spaces are too large to allow deterministic analysis when

observing data from a cipher. Therefore we use information theoretic

and statistical analysis and consider the key, plaintext and ciphertext

as random variables.

Assumption: Plaintext and key are independent random variables that

follow uniform distribution.
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Block cipher

The data to be encrypted is split into blocks xi , i = 1, . . . ,N, of fixed

length n. A typical value of n is 128. P = C = Z
n
2, K = Z

ℓ
2.

For the purposes of linear cryptanalysis a block cipher is considered

as a vectorial Boolean function

f : Zn
2 × Z

ℓ
2 → Z

n
2 × Z

ℓ
2 × Z

n
2, f (x , k) = (x , k ,Ek (x))

Inner product of a mask u = (u1, . . . , un) ∈ Z
n
2 and a data vector

x = (x1, . . . , xn) ∈ Z
n
2 is computed as

u · x = u1x1 + u2x2 + . . . unxn.

Linear approximation with mask triple (u, v ,w) ∈ of a block cipher is a

relation

u · x + v · k + w · Ek (x).
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Correlation

◮ Correlation between two Boolean functions f : Zn
2 7→ Z2 and

g : Zn
2 7→ Z2 is defined as

c(f , g) = 2−n (#{x ∈ Z
n
2 | f (x) = g(x)} −#{x ∈ Z

n
2 | f (x) 6= g(x)})

◮ Correlation c(f , 0) is called the correlation of f (x) over x , and

also denoted as cx(f (x)). Then

cx(f (x)) = 2 Pr(f (x) = 0)− 1.

◮ Linear cryptanalysis makes use of Boolean functions derived

from ciphers with large correlations

|cx(u · x + v · k + w · Ek (x))|.
◮ Useful expression:

cx(f (x)) = 2−n
∑

x

(−1)f (x),

where the sum is taken over integers.
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Correlations in iterated block ciphers
We focus on key alternating iterated block ciphers. Let (k1, k2, . . . , kr )
be the extended key with the round keys ki derived from master key

k . A key-alternating cipher Ek has following structure

Ek (x) = g(. . . g(g(g(x + k1) + k2) . . .) + kr ).

Then

cx(u · x + w · Ek (x)) =
∑

τ

r
∏

i=1

(−1)τi ·ki cz(τi · z + τi+1 · g(z)),

where τ = (τ1 = u, τ2, . . . , τr , τr+1 = w). [JD94]

✲

k1⊕ ✲

k2⊕
k3⊕ ✲ ✲

kr⊕ ✲x yg g g g
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Proof in case r = 2

✲

k1⊕ ✲

k2⊕ ✲x Ek (x)g g

In this case τ = (u, τ2,w)

cx(u · x + w · Ek (x)) = 2−n
∑

x

(−1)u·x+w·Ek (x)

= 2−n
∑

x

(−1)u·x+w·g(g(x+k1)+k2)

= 2−2n
∑

τ

∑

x

(−1)u·x+τ2·g(x+k1)
∑

y

(−1)τ2·y+w·g(y+k2)

= 2−2n
∑

τ

∑

z1

(−1)u·(z1+k1)+τ2·g(z1)
∑

z2

(−1)τ2·(z2+k2)+w·g(z2)

=
∑

τ

(−1)u·k1+τ2·k2cz1
(u · z1 + τ2 · g(z1))cz2

(τ2 · z2 + w · g(z2)).
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Linear characteristic

Similarly as in the previous proof, we set z1 = x + k1 and

zi = g(zi−1) + ki , i = 2, . . . , r . Let v = (v1, . . . , vr , vr+1) be an

(r + 1)-tuple of masks such that v1 = u and vr+1 = w . Then

r
⊕

i=1

(vi · zi + vi+1 · g(zi)) = u · x + v1 · k1 + . . .+ vr · kr + w · Ek (x).

The sequence v = (v1, . . . , vr , vr+1) is called a linear characteristic

from u to w over the key-alternating cipher Ek .

We set v · k = v1 · k1 + . . .+ vr · kr . Then the linear characteristic

v = (v1, . . . , vr , vr+1) defines the linear approximation

u · x + v · k + w · Ek (x).
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Correlation of linear characteristic
Using

cx(u · x + w · Ek (x)) =
∑

τ

(−1)τ ·k
r
∏

i=1

cz(τi · z + τi+1 · g(z)),

where τ = (u, τ2, . . . , τr ,w), we obtain

cx(u · x + v · k + w · Ek (x)) = (−1)v ·k cx(u · x + w · Ek (x))

= (−1)v ·k
∑

τ

(−1)τ ·k
r
∏

i=1

cz(τi · z + τi+1 · g(z))

=
r
∏

i=1

cz(vi · z + vi+1 · g(z)) +
∑

τ 6=v

(−1)τ ·k
r
∏

i=1

cz(τi · z + τi+1 · g(z)).

Taking the average over k = (k1, . . . , kr ), where all ki take all possible

values, will make the second term vanish if at least one τi 6= 0. We

can state the following theorem.
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Average correlation of linear characteristic
Assumption. Round keys k1, . . . , kr take all possible values.

Theorem. Average correlation of a linear characteristic

v = (v1, v2, . . . , vr , vr+1) from u to w taken over extended keys

k = (k1, . . . , kr ) is

c̃(u, v ,w) = Avgk cx(u · x + v · k + w · Ek (x))

=

r
∏

i=1

cz(vi · z + vi+1 · g(z))

◮ In the first practical cryptanalysis, the following estimate was used

cx (u · x + v · k + w · Ek (x)) = (−1)v·k cx (u · x + w · Ek (x)) ≈ c̃(u, v ,w)

◮ c̃(u, v ,w) was computed using the Piling up lemma under the heuristic
assumption of round-independence. We replaced this assumption by assuming
independent round keys (i.e., long-key cipher [DR2007]).

◮ Is c̃(u, v ,w) a good estimate for any fixed key k?
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Case of single dominant characteristic
Rewriting the previous equation gives

cx(u · x + w · Ek (x)) ≈ (−1)v ·k
r
∏

i=1

cz(vi · z + vi+1 · g(z)). (1)

The values cx(u · x + w · Ek (x)) are estimated from cipher data. In

reality,

cx(u · x + w · Ek (x)) =
∑

τ

(−1)τ ·k
r
∏

i=1

cz(τi · z + τi+1 · g(z)).

A characteristic v = (v1, . . . , vr+1) is called dominant characteristic

from u to w , if

c̃(u, v ,w) =

r
∏

i=1

cz(vi · z + vi+1 · g(z)) is large, and

r
∏

i=1

cz(τi · z + τi+1 · g(z)) ≈ 0, for τ 6= v .
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Toy example

Ek (x) = g(g(x) + k), where g is the AES S-box and k is eight bits.

The maximum of |c(u · x + v · g(x))| is 2−3.Then for any 8-bit end

masks u and w there exist many characteristics v with equally large

correlations

|c̃(u, v ,w)| = 2−6

which is the maximum possible value 2−6.

On the other hand, for any given (u,w) the true value

|cx(u · x + w · Ek (x))| varies a lot with the key k .

Consider (u,w) = (❊❆, ❊❆). Then we have

|cx(u · x + w · Ek (x))| = 0, for 21 keys k .

For these keys, linear cryptanalysis fails!

For the remaining 235 keys k we have

|cx(u · x + w · Ek (x))| ≥ 2−6.

There are no single dominant characteristics.



Linear Cryptanalysis

S3 2015

15/55

Correlations over SPN: S-box layer

x = (x1, x2, . . . , xt)

g(x) = (S1(x1),S2(x2), . . . ,St(xt))

Assumption: Inputs xj to different S-boxes are independent.

u = (u1, u2, . . . , ut)

v = (v1, v2, . . . , vt)

cx(u · x + v · g(x)) =

t
∏

j=1

cxj
(uj · xj + vj · g(xj)),

by the Piling up lemma.

To maximize the correlation one usually takes almost all uj and vj

equal to zero, since then cxj
(uj · xj + vj · g(xj)) = 1.
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Linear characteristics for SPN: linear layer

g(x) = Mx

cx(u · x + v · Mx)) = cx(u · x + M tv · x))

=

{

1 if u = M tv

0 otherwise

This uniquely determines the masks over the linear layer.

Text-books have nice concrete examples of how to construct linear

characteristics over SPNs, see [Stinson] or [Knudsen-Robshaw].
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SPN characteristic example



Linear Cryptanalysis

S3 2015

18/55

Section: Matsui’s algorithms



Linear Cryptanalysis

S3 2015

19/55

Empirical correlation

Given a sample D of size N of plaintext-ciphertext pairs

(x , y = EK (x)) obtained from cipher with unknown key K the

empirical correlation (or observed correlation) ĉ(D,K ) of linear

approximation u · x + w · y) is computed as

ĉ(D,K ) =

1

N
(#{(x , y) | u · x + w · y = 0} −#{(x , y) | u · x + w · y 6= 0})
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Algorithm 1
Matsui’s Algorithm 1 is a statistical cryptanalysis method for finding

one bit of the key with the following steps

1. Select a linear characteristic v such that the average correlation

c̃ = c̃(u, v ,w)

deviates from 0 as much as possible.

2. Sample plaintext-ciphertext pairs (x ,EK (x)) for a fixed

(unknown) key K and determine the empirical correlation

ĉ(D,K ) of the linear approximation

u · x + w · EK (x)

3. If c̃ and ĉ are of the same sign, output v · K = 0. Else output

v · K = 1.

Here estimate (1) is used: cx(u · x + w · EK (x)) ≈ (−1)v ·K c̃(u, v ,w).
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Algorithm 2

Matsui’s Algorithm 2 is a statistical cryptanalysis method for finding a

part of the last round key for block ciphers where a relation (last

round trick)

Ek ′,kr
(x) = Gkr

(E ′
k ′(x)),

where kr is relatively short, can be constructed from the encryption

transformation.

1. Select a linear characteristic v such that the average correlation

c̃ = c̃(u, v ,w) of the linear approximation

u · x + v · k ′ + w · E ′
k ′(x)

deviates from 0 as much as possible.
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Algorithm 2, cont’d

2. Take a sample D of plaintext-ciphertext pairs (x ,Ek ′,kr
) of size N.

For each last round key candidate K , compute pairs

(x , y = G−1
K (Ek ′,kr

(x)) and determine the empirical correlation

ĉ(D,K ) of the linear approximation

u · x + w · y = 0

3. Output a set of values K that achieve top largest values

|ĉ(D,K )|.
4. Additionally, one can determine the value v · k ′ as in Algorithm 1.
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Key assumptions of Matsui’s Algorithm 2
The statistical model of Algorithm 2 relies on two assumptions

◮ Hypothesis of right-key equivalence: The observed

correlation ĉ(D,KR) computed from a data sample of size N

obtained by partial decryption using the right key candidate

K = KR follows, for all KR , normal distribution with parameters

|ExpD (ĉ(D,KR)) | = |c̃|, i.e. is the same for all KR

VarD (ĉ(D,KR)) = ExpD (ĉ(D,KR)− ExpD (ĉ(D,KR)))
2
=

1

N
.

◮ Wrong-key hypothesis: The observed correlation ĉ(D,KW )
computed from a data sample of size N obtained by partial

decryption using a wrong key candidate K = KW follows, for all

KW , normal distribution with parameters

ExpD (ĉ(D,KW )) = 0

VarD (ĉ(D,KW )) =
1

N
.
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Variance of observed correlation

We explain the wrong key variance. Let N be the size of the sample

and N0 be the number of observed pairs (x , y) computed with the

wrong key that satisfy u · x + w · y = 0.

N0 is binomially distributed with expected value N/2 and variance

N/4. For large N we can approximate the binomial distribution with

the normal one. From

ĉ =
2N0 − 1

N

it follows that

ExpD (ĉ(D,KW )) = 0 and VarD (ĉ(D,KW )) =
1

N
.

The data variance of the correlation computed for the correct key is

approximately the same.

As N grows the variance decreases.
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Normal distributions of observed correlations in

Algorithm 2

Legend: black = wrong key, red = right key with ExpD (ĉ(D,KR)) < 0,

blue = right key with ExpD (ĉ(D,KR)) > 0
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Section: Success probability and data complexity
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Statistical tests

◮ Linear cryptanalysis makes use of a statistical hypothesis test.

◮ Algorithm 1 makes a decision between

H0 : v · k = 0

H1 : v · k = 1

◮ Algorithm 2 makes a decision between

H0 : K = KR , that is, G−1
K (Ek ′,KR

(x)) = E ′
k ′(x), for all x

H1 : K = KW , that is, data pairs (x ,G−1
K (Ek ′,KR

(x))

are not from the cipher
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The setting

◮ Two normal deviates TW and TR such that

TW ∼ N (µW , σ2
W ) and TR ∼ N (µR , σ

2
R).

(w.l.g. assume µW < µR)

◮ Value of T computed from a sample drawn from either the

distribution of TW or the one of TR . The task is to decide which

one of the two.
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Success probability

◮ Threshold value Θ:

◮ T ≤ Θ ⇒ T is drawn from the distribution of TW ,
◮ T ≥ Θ ⇒ T is drawn from the distribution of TR .

◮ We set bounds to the error probabilities

Pr(TW |T > Θ) ≤ α0 and Pr(TR |T ≤ Θ) ≤ α1,

which are satisfied if

µW + σW ζ0 ≤ Θ ≤ µW − σRζ1,

where Φ(ζi) = 1 − αi for i = 1, 2, and Φ is the cumulative

distribution function of the standard normal distribution.
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Example success area in Algorithm 1

0 c
ĉ
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Example success area in Algorithm 2

c0
ĉ



Linear Cryptanalysis

S3 2015

32/55

Success probability in Algorithm 2

◮ We denote

α0 = 2−a−1 and α1 = 1 − PS,

where a is often called the advantage and PS is the success

probability that the right key is accepted. The value a indicates

how many bits of the right key are correctly determined.

◮ Then a set of 2ℓ−a keys remains to be searched.

◮ Question: Why α0 = 2−a−1 and not 2−a?
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Success probability in Algorithm 2

◮ Plugging in the parameters of distributions

1√
N
Φ−1(1 − 2−a−1) ≤ Θ ≤ |c̃| − 1√

N
Φ−1(PS)

◮ Such a value Θ exists if

PS ≤ Φ(
√

N|c̃| − Φ−1(1 − 2−a−1), or equivalently

N ≥
(

Φ−1(1 − 2−a−1) + Φ−1(PS)
)2

|c̃|2

This lower bound of N is an estimate of the data complexity

required to get a bits of the right key with success probability PS.
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Why α0 = 1 − 2−a−1 ?

Answer: Samples computed with wrong keys will be accepted on

both sides. To have the total probability less than 2−a both sides must

have probability less than 2−a−1.

Question: Why the success probability is not halved?

Answer: There is only one correct key. It can fail the test only on one

side of the distribution.
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Statistical model of Algorithm 2

◮ Φ the cumulative distribution function of the standard normal

distribution

◮ PS success probability, ϕPS
= Φ−1(PS)

◮ 2−a is the proportion of accepted wrong keys

◮ a is the advantage of the attack, ϕa = Φ−1(1 − 2−a−1)

◮ µR and σ2
R are the mean and variance of the normal deviate

ĉ(D,KR) for the right key, and

◮ µW and σ2
W are the mean and variance of the normal deviate

ĉ(D,KW ) for the wrong key.

Then the success probability can be determined by

PS ≈ Φ

(

µR − µW − σWϕa

σR

)

.
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Summary of Algorithm 2
◮ Fix the advantage a, where a ≤ t and t is the length in bits of the

last round key.

◮ Fix the success probability PS

◮ Compute the sample size N from

N =

(

Φ−1(1 − 2−a−1) + Φ−1(PS)
)2

|c̃|2

◮ Use a sample D of N known plaintext-ciphertext pairs

◮ Compute the observed correlations for all 2t last round key

candidates.

◮ Take those 2t−a of the round key candidates that have the

largest empirical correlation (in absolute value).

◮ Complement them to full ℓ-bit keys by appending the remaining

ℓ− t bits to them (assuming the key-schedule allows this).

◮ Search the set of 2ℓ−a cipher key candidates exhaustively.
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Section: Linear Hull theorem



Linear Cryptanalysis

S3 2015

38/55

Fixed-key correlation of a linear characteristic

Recall

cx(u · x + w · Ek (x)) =
∑

τ

r
∏

i=1

(−1)τi ·ki cz(τi · z + τi+1 · g(z)),

where τ =( u, τ2, . . . , τr ,w), and that for any v ,

cx(u · x + v · k + w · Ek (x)) = (−1)v ·k cx(u · x + w · Ek (x))

=
r
∏

i=1

cz(vi · z + vi+1 · g(z)) +
∑

τ 6=v

(−1)τ ·k
r
∏

i=1

cz(τi · z + τi+1 · g(z)).

We also computed the average of this correlation over the keys. The

Right Key Hypothesis states that all right keys behave as the average.

This is clearly not the case. Next we compute the variance of

cx(u · x + v · k + w · Ek (x)) as the key k varies.
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The Fundamental Theorem

By Jensen’s inequality

Avgk cx(u · x + v · k + w · Ek (x))
2 ≥ c̃(u, v ,w)2,

for all v , and in general the strict inequality holds. More accurately,

the following theorem holds

The Linear Hull Theorem [KN94, KN01, DR2007] If the round keys

of a block cipher Ek take on all values (aka Ek is a long-key cipher),

then

Avgk cx(u · x + w · Ek (x))
2 =

∑

τ

c̃(u, τ,w)2.

We denote

ELP(u,w) = Avgk (cx(u · x + w · Ek (x)))
2

and call it the expected linear potential of (u,w).
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Toy example cont’d

Consider the previous example. We saw that in terms of single

characteristics, all (u,w) are about equally good, but there are no

dominant characteristics.

Also in terms of linear hulls, all (u,w) have about equally large ELP:

ELP(✸✸, ❉✺) = 2−10.40 ≤ ELP(u,w) ≤ 2−9.65 = ELP(❊❆, ❊❆)

|c(u · x + w · Ek (x))|2 ≥ ELP(❊❆, ❊❆), for 76 keys k .

The weakest of (u,w) is (✸✸, ❉✺). For this mask pair

|cx(u · x + w · Ek (x))| = 0, for 33 keys k .

For the remaining 223 keys we have

|cx(u · x + w · Ek (x))| ≥ 2−6.

|c(u · x + w · Ek (x))|2 ≥ ELP(✸✸, ❉✺), for 80 keys k .
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Computing an estimate of ELP(u,w)

ELP(u,w) = Avgk cx (u · x + w · Ek (x))
2 =

∑

τ2,...,τr

r∏

i=1

cz(τi · z + τi+1 · g(z))2

=
∑

τr

cz(τr · z + w · g(z))2
∑

τr−1

cz(τr−1 · z + τr · g(z))2

· · · · · ·

∑

τ3

cz(τ3 · z + τ4 · g(z))2

∑

τ2

cz(τ2 · z + τ3 · g(z))2cz(u · z + τ2 · g(z))2

◮ This expression gives an iterative algorithm: start from the bottom line to
compute for each τ3 the value on the last line.

◮ Can be made feasible by restricting to τ with low Hamming weight and keeping
only the largest values from each iteration.

◮ Restrictions on τ will lead to a lower bound of ELP(u,w), which is still much
larger than any c̃(u, v ,w)2.
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Section: Key variance and more realistic key hypotheses
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Key-variance of observed correlation

Wrong key case
see also [BT2013]

◮ The wrong-key hypothesis states that ExpD (ĉ(D,KW )) is equal

for all keys KW . This is not true in practice.

◮ Denote c(KW ) = ExpD (ĉ(D,KW )) .

◮ Then ExpKW
(c(KW )) = 0

◮ To compute the variance, we use

VarKW
(c(KW )) = ExpKW

(

c(KW )2
)

−
(

ExpKW
(c(KW ))

)2
.

◮ By [DR2007], Corollary 7, ExpKW

(

c(KW )2
)

= 2−n.

◮ Then VarKW
(c(KW )) = 2−n.
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Key-variance of observed correlation
Right key case (New!)

The Right-key equivalence hypothesis states that |ExpD (ĉ(D,KR)|) is

equal for all keys KR . This is not realistic.

◮ Denote ExpD (ĉ(D,KR)) = c̃(KR). If c̃(KR) > 0 set KR ∈ K+.

Else KR ∈ K−

◮ Hypothesis of Algorithm 2 (single dominant characteristic):

ExpKR∈K−(c̃(KR)) ≈ −ExpKR∈K+(c̃(KR))

◮ Denote |ExpKR∈K+ (c̃(KR)) | = c

◮ To compute the variance of c̃(KR), for KR ∈ K+ (similarly for

KR ∈ K−) we apply again the rule

VarX (F (X )) = ExpX

(

F (X )2
)

− (ExpX (F (X )))
2
.

◮ Then we get VarKR∈K+ (c̃(KR)) = ELP − c2.
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Total variance of observed correlation

Wrong key case

◮ To compute the total variance over data and wrong keys, we

recall the rule

VarX ,Y (F (X ,Y )) = ExpX (VarY (F (X ,Y )))+VarX (ExpY (F (X ,Y )))

◮ ... and get

VarD,KW
(ĉ(D,KW )) =

1

N
+ 2−n.
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Total variance of observed correlation

Right key case

◮ To compute the total variance of |ĉ(D,KR)| over data and right

keys, we use the same rule as above

◮ ... and get

ExpKR
(VarD (ĉ(D,KR))) =

1

N

VarKR
(ExpD (ĉ(D,KR))) = VarKR

(c̃(KR)) = ELP − c2.

◮ VarD,KR∈K+ (ĉ(D,KR)) =VarD,KR∈K− (ĉ(D,KR)) =
1
N
+ ELP − c2
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How large is the right key variance

Matsui’s Algorithm uses one dominant characteristic (u, v ,w). By the

Linear Hull theorem

ELP − c̃(u, v ,w)2 =
∑

τ 6=v

c̃(u, τ,w)2,

and

|ExpD,KR
ĉ(D,KR)| = c = |c̃(u, v ,w)|.

In the ideal case, the sum on the right side of the first equation is the

variance of pure noise, which has mean equal to zero and variance

equal to 2−n. We obtain

ELP − c2 ≥ 2−n.

Note that the classical hypothesis of right key equivalence assumes

ELP − c2 = 0.



Linear Cryptanalysis

S3 2015

48/55

Recalling the statistical model of Algorithm 2

◮ Φ the cumulative distribution function of the standard normal

distribution

◮ PS success probability, ϕPS
= Φ−1(PS)

◮ 2−a is the proportion of accepted wrong keys

◮ a is the advantage of the attack, ϕa = Φ−1(1 − 2−a−1)

◮ µR and σ2
R are the mean and variance of the normal deviate

ĉ(D,KR) for the right key, and

◮ µW and σ2
W are the mean and variance of the normal deviate

ĉ(D,KW ) for the wrong key.

Then the success probability can be determined by

PS ≈ Φ

(

µR − µW − σWϕa

σR

)

.
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Success probability and data complexity

Now we plug in the new parameters of Matsui’s Algorithm 2 to get

PS ≈ Φ

(

c
√

N −
√

1 + N2−nϕa
√

N(ELP − c2) + 1

)

.

If ELP = c2 (key-equivalence) then this is identical to the result in

[BT2013] Eq.(6).

In reality, we have ELP− c2 > 2−n, and we derive the data complexity

estimate as

N ≥ (ϕa + ϕPS
)2

c2 − (ELP − c2)(ϕa + ϕPS
)2 + ϕ2

a(ELP − c2 − 2−n)
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Extensions and variations

◮ Zero-correlation: c = c̃(KR) = 0 for all keys

◮ Is it possible to handle a case with two dominant characteristics?

Example [AES book]

linear approximation is composed of more than one dominant

characteristics

c(u · x + w · Ek (x)) = (−1)γ·k cγ + (−1)λ·k cλ

where cγ and cλ are the correlations of the characteristics

Then Avg (c(u · x + γ · k + w · Ek (x)) = cγ .

But this gives a usable estimate only for a half of the keys.

Those are the keys for which λ · k = 0 and then

c(u · x + γ · k + w · Ek (x)) = cγ + cλ

For the remaining keys we have

c(u · x + γ · K + w · EK (x)) = cγ − cλ ≈ 0.



Linear Cryptanalysis

S3 2015

51/55

The case of about equally small characteristics

To resist linear cryptanalysis, [DR2007] advices designers to take

care that no single dominant characteristic exists.

It will make linear cryptanalysis harder, but not impossible. We have

for the right key

ExpD(ĉ(D,KR)) = cx(u · x + w · Ek (x)) ∼ N (0,ELP)

from where we get Theorem 22 of [DR2007]

Theorem. If the number of characteristics with non-zero correlation is

large and all characteristic correlations are small compared to ELP,

then
cx(u · x + w · Ek (x))

ELP
∼ χ2(1)
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The case of about equally small characteristics,

cont’d

For the wrong keys

ExpD(ĉ(D,KW )) ∼ N (0, 2−n)

as before, and

2nExpD(ĉ(D,KW ))2 ∼ χ2(1)

If ELP >> 2−n the distributions of the observed correlations for the

wrong keys and right keys can be distinguished.
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Multiple/Multidimensional linear cryptanalysis

◮ So far we fixed (u, v).

◮ By collecting a number, say m, strong linear approximations with

different mask pairs (u,w) the sum of their observed squared

correlations is a multiple of a χ2(m) distributed random variable

◮ ... provided that the correlations are independent random

variables.

◮ To overcome this problem, it is possible to consider distributions

of data extracted from plaintext-ciphertext pairs with an expected

distribution which is far from uniform.

◮ Such non-uniform distributions can be found by with the help of

linear approximations with high correlations.

◮ They may also be found with the help of truncated differentials

with high probabilities.



Linear Cryptanalysis

S3 2015

54/55

Summary
◮ Linear cryptanalysis using one dominant characteristic
◮ First the statistical model of observed correlation was

presented for a fixed key
◮ Traditional key-equivalence hypotheses were stated
◮ As they are known not to hold in practice for all keys,
◮ we studied the variance in the correlation due to the key for

wrong keys and also for right keys.
◮ New estimates, with improved theoretical justification, of

success probability and data complexity achieved.
◮ Among modern ciphers, cases with single dominant linear

characteristics are very rare
◮ The statistical model for uniformly small characteristics

correlations briefly described
◮ Enhancements by using more linear approximations was

discussed.
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